Nano memory research highlighted at national science facility
Ground-breaking research exploring X-ray absorption spectroscopy (XAS) techniques for memory applications has been made a showcase study one of the UKâs leading science facilities.
Researchers from the University of Southampton and University of Kent have studied the role of titanium dioxide thin films in emerging memory devices using Diamond Light Source, the UKâs national synchrotron facility, based in Oxfordshire. Diamond works like a giant microscope, accelerating electrons to produce bright light that scientists can use to study anything from fossils and jet engines to viruses and vaccines.
The research was led by the Prodromakis team in the department of Electronics and Computer Science (ECS) that is acknowledged as world-leading in the emerging area of memristive devices and their applications in microelectronics. The study has been enabled by versatile testing platforms being created by the teamâs start-up ArC Instruments Ltd that in this case was used for deciphering the underlying switching mechanisms of memristive devices.
Diamond Light Source is highlighting the titanium films research as a leading case study through its Industrial Liaison Office.
The case study reads: âTitanium dioxide is one of the most widely used metal oxides and in recent years it has attracted increasing attention in the form of thin films for applications in microelectronics. In particular, it has found potential application in resistive random access memory (RRAM) cells, where the titanium dioxide active layer is sandwiched between two metal electrodes in a metal-insulator-metal (MIM) device architecture. Because of their simple structure, RRAM cells, also known as memristors, can be incorporated into devices with high density that function at low power and high speed.â?
âResearchers from the University of Southampton and the University of Kent used microfocus X-ray absorption spectroscopy (XAS) techniques on Beamline I18 at Diamond Light Source to investigate highly disordered titanium oxide-based materials at the atomic scale in its virgin state and after switching to low resistance states by bias.â?
âTo date, only a few studies have been published on XAS analysis of TiO2âx thin films for memristive devices, and they are all based on the analysis of the Ti L2,3-edge. However, the spectroscopy techniques applied in this study to the Ti K-edge have been shown to be more effective in assessing very small changes in the local coordination around Ti due to structural modification, in particular through the analysis of the Ti K pre-edge XANES region under operating conditions.â?
Related Links
The University cannot accept responsibility for external websites.