The University of Southampton

Between 1959 and 1963 I was working with Eric Zepler as a lecturer in the Department of Electronics. During those four years there were remarkable developments in solid-state electronics around the world. Microelectronics had arrived.

In 1959 discrete silicon bipolar transistors were being manufactured, and in that year Robert Noyce of Fairchild Semiconductor made the first transistor circuits that were integrated on single silicon chips. At that time the descriptions used for small circuit assemblies were miniaturisation and microminiaturisation. Such long words seemed to be inappropriate for such small things!

By 1963 the word microelectronics had come into widespread use. Silicon bipolar integrated circuits were being manufactured, both analogue and digital. In that year an important book entitled Microelectronics, edited by Edward Keonjian, was published by McGraw-Hill. It is available in the Hartley Library. In that book leading industrial engineers described their work on the miniaturisation of circuits. Out of 377 pages altogether, 97 were devoted to the chapter on Semiconductor Integrated Circuits written by Gordon Moore of Fairchild Semiconductor (later he was one of the founders of Intel with Robert Noyce).

In that chapter Moore devoted nearly all of the pages to the fabrication, structure and operation of integrated circuits, analogue and digital, that used silicon bipolar transistors. In the pages devoted to digital circuits he described how NAND and NOR functions could be provided by various configurations, and how such micrologic elements could be integrated in silicon to make a shift register, for example. Although only two pages were devoted to field-effect transistors, both unipolar (junction gate) and surface controlled (insulated gate) types, and the terminology MOS was not mentioned, Moore wrote that “the future of such surface-controlled structures looks extremely interesting”. While that book was being published intensive research work on MOS transistors had begun, because those devices offered the prospects of low-power operation and large-scale integration if the electronic properties of the interface between the silicon substrate and the insulating oxide under the gate electrode of each transistor could be understood and controlled.

In 1959, when we launched the first BSc course in Electronics in Britain, it was difficult to predict the advances that might be made in solid-state electronics in subsequent years. However, by enabling our students to acquire a good understanding of the physical operation of solid-state devices, and of the principles of circuit design, we could prepare them to participate successfully in the microelectronics revolution after they graduated.