Grace, Paul, Burns, Daniel, Neumann, Geoffrey, Pickering, Brian, Melas, Panagiotis and Surridge, Michael
(2018)
Identifying privacy risks in distributed data services: A model-driven approach.
In 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS).
IEEE.
.
(doi:10.1109/ICDCS.2018.00157).
Neumann, Geoffrey, Grace, Paul, Burns, Daniel and Surridge, Michael
(2019)
Pseudonymization risk analysis in distributed systems.
Journal of Internet Services and Applications, 10 (1).
(doi:10.1186/s13174-018-0098-z).
Burns, Daniel, Karamitsos, Sotirios and Pilaftsis, Apostolos
(2016)
Frame-covariant formulation of inflation in Scalar-Curvature theories.
Nuclear Physics B, 907, .
(doi:10.1016/j.nuclphysb.2016.04.036).
Burns, Daniel and Pilaftsis, Apostolos
(2015)
Matter quantum corrections to the graviton self-energy and the Newtonian potential.
Physical Review D, 91 (6), [064047].
(doi:10.1103/PhysRevD.91.064047).
Chmiel, Francis, Burns, Daniel, Pickering, Brian, Blythin, Alison, Wilkinson, Thomas and Boniface, Michael
(2020)
Retrospective development and evaluation of prognostic models for exacerbation event prediction in patients with Chronic Obstructive Pulmonary Disease using data self-reported to a digital health application.
The Lancet Digital Health.
(doi:10.1101/2020.11.30.20237727).
(Submitted)
Chmiel, F. P., Azor, M., Borca, F., Boniface, M. J., Burns, D. K., Zlatev, Z. D., White, N. M., Daniels, T. W.V. and Kiuber, M.
(2020)
Identifying those at risk of reattendance at discharge from emergency departments using explainable machine learning.
medRxiv.
(doi:10.1101/2020.12.02.20239194).
Ptasinska, Anetta, Whalley, Celina M., Bosworth, Andrew, Poxon, Charlotte, Bryer, Claire, Machin, Nicholas, Grippon, Seden, Wise, Emma L, Armson, Bryony, Howson, Emma L. A., Goring, Alice, Snell, Gemma, Forster, Jade, Mattocks, Christopher, Frampton, Sarah May, Anderson, Rebecca, Cleary, David, Parker, Joe, Boukas, Konstantinos, Graham, Nichola, Cellura, Doriana, Garratt, Emma, Skilton, Rachel, Sheldon, Hana, Collins, Alla, Ahmad-Saeed, Nusreen, Friar, Simon, Burns, Daniel, Williams, Tim, Godfrey, Keith, Deans, Zandra, Douglas, Angela, Hill, Sue, Kidd, Michael, Porter, Deborah, Kidd, Stephen P., Cortes, Nicholas J, Fowler, Veronica L., Williams, Tony, Richter, Alex G. and Beggs, Andrew D.
(2021)
Diagnostic accuracy of Loop mediated isothermal amplification coupled to Nanopore sequencing (LamPORE) for the detection of SARS-CoV-2 infection at scale in symptomatic and asymptomatic populations.
Clinical Microbiology and Infection, 27 (9), .
(doi:10.1016/j.cmi.2021.04.008).
Duckworth, Christopher, Chmiel, Francis P., Burns, Daniel, Zlatev, Zlatko D., White, Neil M., Daniels, Thomas W. V., Kiuber, Michael and Boniface, Michael J.
(2021)
Using explainable machine learning to characterise data drift and detect emergent health risks for emergency department admissions during COVID-19.
Scientific Reports, 11 (1), [23017].
(doi:10.1038/s41598-021-02481-y).
Boniface, Michael, Burns, Daniel, Duckworth, Chris, Duruiheoma, Franklin, Armitage, Htwe, Ratcliffe, Naomi, Duffy, John, O’Keeffe, Caroline and Inada-Kim, Matt
(2021)
COVID Oximetry @home: evaluation of patient outcomes.
medRxiv.
(doi:10.1101/2021.05.29.21257899).
Kidd, Stephen, Burns, Daniel, Armson, Bryony, Beggs, Andrew D., Howson, Emma L. A., Williams, Anthony, Snell, Gemma, Wise, Emma L., Goring, Alice, Vincent-Mistiaen, Zoé, Grippon, Seden, Sawyer, Jason, Cassar, Claire, Cross, David, Lewis, Tom, Reid, Scott, Rivers, Samantha, James, Joe, Skinner, Paul, Banyard, Ashley, Davies, Kerrie, Ptasinska, Anetta, Whalley, Celina M., Poxon, Charlie, Bosworth, Andrew, Kidd, I. Michael, Richter, Alex G., Burton, Jane, Love, Hannah, Fouch, Sarah, Tillyer, Claire, Sowood, Amy, Patrick, Helen, Moore, Nathan, Andreou, Michael, Laxman, Shailen, Morant, Nick, Clark, Duncan, Walsh, Charlotte, Houghton, Rebecca, Parker, Joel D, Slater-Jefferies, Joanne, Brown, Ian, Deans, Zandra, Porter, Deborah, Cortes, Nicholas J., Godfrey, Keith, Douglas, Angela, Hill, Sue and Fowler, Veronica L.
(2021)
RT-LAMP has high accuracy for detecting SARS-CoV-2 in saliva and naso/oropharyngeal swabs from asymptomatic and symptomatic individuals.
(doi:10.1101/2021.06.28.21259398).
Chmiel, F. P., Burns, D. K., Azor, M., Borca, F., Boniface, M. J., Zlatev, Z. D., White, N. M., Daniels, T. W.V. and Kiuber, M.
(2021)
Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments.
Scientific Reports, 11 (1), [21513].
(doi:10.1038/s41598-021-00937-9).
Kidd, Stephen P, Burns, Daniel, Armson, Bryony, Beggs, Andrew D, Howson, Emma L A, Williams, Anthony, Snell, Gemma, Wise, Emma L, Goring, Alice, Vincent-Mistiaen, Zoe, Grippon, Seden, Sawyer, Jason, Cassar, Claire, Cross, David, Lewis, Thomas, Reid, Scott M, Rivers, Samantha, James, Joe, Skinner, Paul, Banyard, Ashley, Davies, Kerrie, Ptasinska, Anetta, Whalley, Celina, Ferguson, Jack, Bryer, Claire, Poxon, Charlie, Bosworth, Andrew, Kidd, Michael, Richter, Alex, Burton, Jane, Love, Hannah, Fouch, Sarah, Tillyer, Claire, Sowood, Amy, Patrick, Helen, Moore, Nathan, Andreou, Michael, Morant, Nick, Houghton, Rebecca, Parker, Joe, Slater-Jefferies, Joanne, Brown, Ian, Gretton, Cosima, Deans, Zandra, Porter, Deborah, Cortes, Nicholas J, Douglas, Angela, Hill, Sue L, Godfrey, Keith M and Fowler, Veronica L
(2022)
Reverse-transcription loop-mediated isothermal amplification has high accuracy for detecting severe acute respiratory syndrome coronavirus 2 in saliva and nasopharyngeal/oropharyngeal swabs from asymptomatic and symptomatic individuals.
Journal of Molecular Diagnostics, 24 (4), .
(doi:10.1016/j.jmoldx.2021.12.007).
Chmiel, Francis P, Burns, Dan, Pickering, John Brian, Blythin, Alison, Wilkinson, Thomas MA and Boniface, Michael J
(2022)
Prediction of chronic obstructive pulmonary disease exacerbation events by using patient self-reported data in a digital health app: statistical evaluation and machine learning approach.
JMIR Medical Informatics, 10 (3), , [e26499].
(doi:10.2196/26499).